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1. Introduction.  Several fixed point theorems such as Banach, Krasnoselskii, Darbo, …etc 

enable us to prove the existence and uniqueness or existence solutions of many integral 

equations in different Banach spaces [3,7,10,11]. 

In this work, we try to establish the sufficient conditions under which we can prove the 
existence theorem of an integro-differential equation to get weakly continuous solutions 
in the space 𝐶𝐶[0,1] by using a fixed point theorem due to Lingjuan Ye and Congcong 
[16]. Also, we will treat the existence of continuous solutions for the same integro-
differential equation in the space 𝐶𝐶[0,1] by using a fixed point theorem due to Nadler [6].  
In the following, we will introduce some definitions and basic theorems that will be used 
in our paper (see [1- 4, 19-21] ).     

Definition 1.  (𝑏𝑏-metric space)[5] 
Let 𝑋𝑋 be a non-empty set and b ≥ 1 is a given real number. A function  
𝑑𝑑:𝑋𝑋 × 𝑋𝑋 ℝ+ is said to be 𝑏𝑏-metric space if and only if for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋, the 
following conditions are satisfied: 

i) 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0 if and only if 𝑥𝑥 = 𝑦𝑦 
ii) 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥) 
iii) 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ≤ 𝑏𝑏[𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦, 𝑧𝑧)] 

Then the triplet (𝑋𝑋,𝑑𝑑, 𝑏𝑏) is called 𝑏𝑏-metric space. 

Definition 2. (complete 𝑏𝑏-metric space)[16] 
Let (𝑋𝑋,𝑑𝑑, 𝑏𝑏) be a 𝑏𝑏-metric space and {𝑥𝑥𝑛𝑛} be a sequence of 𝑋𝑋, then we can define the 
following: 
i) {𝑥𝑥𝑛𝑛} is convergent if there exists an 𝑥𝑥 in 𝑋𝑋 such that for any 𝜀𝜀 < 0, there 

exists an 𝑛𝑛(𝜀𝜀) ∈ 𝑁𝑁 such that 𝑛𝑛 ≥ 𝑛𝑛(𝜀𝜀), 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝑥𝑥) < 𝜀𝜀 
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ii) {𝑥𝑥𝑛𝑛} is a Cauchy sequence if for any 𝜀𝜀 < 0, there exists an 𝑛𝑛(𝜀𝜀) ∈ 𝑁𝑁 such that 𝑚𝑚,𝑛𝑛 ≥
𝑛𝑛(𝜀𝜀), 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚) < 𝜀𝜀 

iii) (𝑋𝑋,𝑑𝑑) is complete if and only if every Cauchy sequence in 𝑋𝑋 is convergent. 

Definition 3.  ((s, r)-contractive multi-valued operator) [16] 

Let (𝑋𝑋,𝑑𝑑) be a metric space, 𝑇𝑇:𝑋𝑋 𝐶𝐶𝐶𝐶(𝑋𝑋) be a multi-valued operator. If there exist 
constants s, r with 𝑟𝑟 ∈ [0, 1], 𝑠𝑠 ≥ 𝑟𝑟 such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 

𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇) ≤ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥,𝑦𝑦)
       
�� 𝐻𝐻(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝑟𝑟𝑀𝑀𝑇𝑇(𝑥𝑥,𝑦𝑦) 

Where 

𝑀𝑀𝑇𝑇(𝑥𝑥,𝑦𝑦) = max �𝑑𝑑(𝑥𝑥,𝑦𝑦),𝑑𝑑(𝑥𝑥,𝑇𝑇𝑇𝑇),𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇),
𝑑𝑑(𝑥𝑥,𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇)

2𝐾𝐾
� 

Then 𝑇𝑇 is called a (𝑠𝑠, 𝑟𝑟)-contractive multi-valued operator. 

Definition 4.  (weakly (s, r)-contractive multi-valued operator) [16] 
Let (𝑋𝑋,𝑑𝑑) be a metric space, 𝑇𝑇:𝑋𝑋 𝐶𝐶𝐶𝐶(𝑋𝑋) be a multi-valued operator. If there exist 𝑟𝑟 ∈
[0, 1], 𝑠𝑠 ≥ 𝑟𝑟, 𝐿𝐿 ≥ 0 such that for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 
𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇) ≤ 𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥,𝑦𝑦)

       
�� 𝐻𝐻(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝑟𝑟𝑀𝑀𝑇𝑇(𝑥𝑥,𝑦𝑦) + 𝐿𝐿min{𝑑𝑑(𝑥𝑥,𝑦𝑦),𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇)} 

Where 

𝑀𝑀𝑇𝑇(𝑥𝑥,𝑦𝑦) = max �𝑑𝑑(𝑥𝑥,𝑦𝑦),𝑑𝑑(𝑥𝑥,𝑇𝑇𝑇𝑇),𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇),
𝑑𝑑(𝑥𝑥,𝑇𝑇𝑇𝑇) + 𝑑𝑑(𝑦𝑦,𝑇𝑇𝑇𝑇)

2𝐾𝐾
� 

Then 𝑇𝑇 is called a weakly (𝑠𝑠, 𝑟𝑟)-contractive multi-valued operator. 
Remark.  when 𝐿𝐿 = 0, the above definition reduces to definition 3. 

Definition 5.  (Hausdorff b-metric) [17] 
For 𝐴𝐴,𝐵𝐵 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋), define the function 𝐻𝐻:𝐶𝐶𝐶𝐶(𝑋𝑋) × 𝐶𝐶𝐶𝐶(𝑋𝑋) → ℝ+ by 
𝐻𝐻(𝐴𝐴,𝐵𝐵) = max{𝛿𝛿(𝐴𝐴,𝐵𝐵), 𝛿𝛿(𝐵𝐵,𝐴𝐴)} 

where 
𝛿𝛿(𝐴𝐴,𝐵𝐵) = sup{𝑑𝑑(𝑎𝑎,𝐵𝐵),𝑎𝑎 ∈ 𝐴𝐴} , 𝛿𝛿(𝐵𝐵,𝐴𝐴) = sup{𝑑𝑑(𝑏𝑏,𝐴𝐴), 𝑏𝑏 ∈ 𝐵𝐵} 

with  
𝑑𝑑(𝑎𝑎,𝐶𝐶) = inf  {𝑑𝑑(𝑎𝑎, 𝑥𝑥), 𝑥𝑥 ∈ 𝐶𝐶} 

𝐻𝐻 is called the Hausdorff 𝑏𝑏-metric induced by the 𝑏𝑏-metric 𝑑𝑑 
We recall the following properties from [5, 6] 

Theorem 1 
Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a 𝑏𝑏-metric space. For any 𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋), [𝐶𝐶𝐶𝐶(𝑋𝑋) denotes the family 
of non-empty, closed and bounded subsets of 𝑋𝑋] and any 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑋𝑋, we have the 
following: 
1) 𝑑𝑑(𝑥𝑥,𝐵𝐵) ≤ 𝑑𝑑(𝑥𝑥, 𝑏𝑏) for any 𝑏𝑏 ∈ 𝐵𝐵 
2) 𝛿𝛿(𝐴𝐴,𝐵𝐵) ≤ 𝐻𝐻(𝐴𝐴,𝐵𝐵) 
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3) 𝑑𝑑(𝑥𝑥,𝐵𝐵) ≤ 𝐻𝐻(𝐴𝐴,𝐵𝐵) for any 𝑎𝑎 ∈ 𝐴𝐴 
4) 𝐻𝐻(𝐴𝐴,𝐴𝐴) = 0 
5) 𝐻𝐻(𝐴𝐴,𝐵𝐵) = 𝐻𝐻(𝐵𝐵,𝐴𝐴) 
6) 𝐻𝐻(𝐴𝐴,𝐶𝐶) ≤ 𝑠𝑠[𝐻𝐻(𝐴𝐴,𝐵𝐵) + 𝐻𝐻(𝐵𝐵,𝐶𝐶)] 
7) 𝑑𝑑(𝑥𝑥,𝐴𝐴) ≤ 𝑠𝑠[𝑑𝑑(𝑥𝑥,𝑦𝑦) + 𝑑𝑑(𝑦𝑦,𝐴𝐴)] 

Theorem 2 
Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a 𝑏𝑏-metric space. For any 𝐴𝐴,𝐵𝐵 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋). Then for each ℎ > 1 and for 
each 𝑎𝑎 > 𝐴𝐴, there exists 𝑏𝑏(𝑎𝑎) ∈ 𝐵𝐵 such that 𝑑𝑑�𝑎𝑎, 𝑏𝑏(𝑎𝑎)� ≤ ℎ𝐻𝐻(𝐴𝐴,𝐵𝐵) 

Theorem 3 
Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a 𝑏𝑏-metric space. For any 𝐴𝐴 ∈ 𝐶𝐶𝐶𝐶(𝑋𝑋) and 𝑥𝑥 ∈ 𝑋𝑋, we have   
𝑑𝑑(𝑥𝑥,𝐴𝐴) = 0 𝑖𝑖𝑖𝑖𝑖𝑖 𝑥𝑥 ∈ A� = A, where A� denotes the closure of the set A. 

Theorem 4 
Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a 𝑏𝑏-metric space and let {𝑥𝑥𝑛𝑛} be a sequence in 𝑋𝑋.  If 
lim
𝑛𝑛→∞+

𝑥𝑥𝑛𝑛 =𝑦𝑦 and lim
𝑛𝑛→∞+

𝑥𝑥𝑛𝑛 = 𝑧𝑧,  then   𝑦𝑦 = 𝑧𝑧 

Theorem 5 
Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a 𝑏𝑏-metric space and let {𝑥𝑥𝑛𝑛} be a sequence in 𝑋𝑋 such that  

𝑑𝑑(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1) ≤ 𝜆𝜆 𝑑𝑑(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛) 
For some 𝜆𝜆 ∈ (0, 𝑠𝑠−1) and each  𝑛𝑛 ∈ ℕ. Then {𝑥𝑥𝑛𝑛} is a Cauchy sequence in 𝑋𝑋 

 

2. Main results 

Consider the integro-differential equation 

𝑥𝑥(𝑡𝑡) = 𝑔𝑔(𝑡𝑡) + � 𝑘𝑘(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠, 𝑥𝑥′(𝑠𝑠)� 𝑑𝑑𝑑𝑑  ,       𝑡𝑡 ∈ [0,1]        (1) 

Now, we will create an integral equation which equivalent to the integro-differential 
equation (1), by differentiating equation (1) with respect to 𝑡𝑡, hence we get   

 

𝑥𝑥′(𝑡𝑡) = 𝑔𝑔′(𝑡𝑡) + � 𝑘𝑘′(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠, 𝑥𝑥′(𝑠𝑠)� 𝑑𝑑𝑑𝑑  ,     𝑡𝑡 ∈ [0,1] 

Assume that  

𝑥𝑥′(𝑡𝑡) = 𝑦𝑦(𝑡𝑡),    𝑔𝑔′(𝑡𝑡) = ℎ(𝑡𝑡),    𝑘𝑘′(𝑡𝑡, 𝑠𝑠) = 𝑣𝑣(𝑡𝑡, 𝑠𝑠) 

Then the last integral equation becomes 

𝑦𝑦(𝑡𝑡) = ℎ(𝑡𝑡) + � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠,𝑦𝑦(𝑠𝑠)� 𝑑𝑑𝑑𝑑 ,      𝑡𝑡 ∈ [0,1]    (2) 
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So, the solution of our integro-differential equation (1) can be determined if the solution 
of the equivalent integral equation (2) is obtained. 

First, we will treat a weakly continuous solution of our integro-differential equation (1) 
in the space 𝐶𝐶[0,1]; the space of all continuous functions defined on an interval 
 𝐼𝐼 = [0,1], with metric 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = max
𝑡𝑡∈[0,1]

|𝑥𝑥(𝑡𝑡) − 𝑦𝑦(𝑡𝑡)|2 ,       ∀𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶[0,1] 

In this case, we see that the space (𝐶𝐶,𝑑𝑑) is a complete 𝑏𝑏-metric space with 𝐾𝐾 = 2. 

We will use in this section the following fixed point theorem due to Lingjuan Ye and 
Congcong Shen [16]. 

Theorem 2.1  

Let (𝑋𝑋,𝑑𝑑) be a complete 𝑏𝑏-metric space and let 𝑇𝑇:𝑋𝑋 → 𝐶𝐶𝐶𝐶(𝑋𝑋) be a weakly (s, r)-
contractive operator with 𝑟𝑟 < min �1

𝐾𝐾
, 𝑠𝑠�. Then 𝑇𝑇 has fixed point. 

 
Let 𝑋𝑋 = 𝐶𝐶[0,1]  and define the operator 

𝑇𝑇:𝑋𝑋 = 𝐶𝐶[0,1] → 𝐶𝐶𝐶𝐶(𝑋𝑋) 
where 𝐶𝐶𝐶𝐶(𝑋𝑋) denotes the space of all nonempty, closed and bounded subsets in 𝑋𝑋,  
as: 

𝑇𝑇𝑇𝑇(𝑡𝑡) = ℎ(𝑡𝑡) + � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠,𝑦𝑦(𝑠𝑠)� 𝑑𝑑𝑑𝑑  

Now, we will consider some assumptions under which our existence theorem can be 
proved. 
Assume that: 
(i) ℎ ∈ 𝐶𝐶(𝐼𝐼) 
(ii) 𝑣𝑣 = 𝑣𝑣(𝑡𝑡, 𝑠𝑠): 𝐼𝐼 × 𝐼𝐼 →  ℝ is continuous with respect to its two variables 𝑡𝑡, 𝑠𝑠 such that 

∫ |𝑣𝑣(𝑡𝑡, 𝑠𝑠)|21
0 𝑑𝑑𝑑𝑑 < 𝛼𝛼  ,   0 ≤ 𝛼𝛼 ≤ 1 

(iii) 𝑓𝑓 = 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝑡𝑡)� ∶ 𝐼𝐼 × ℝ →  ℝ is continuous such that  

|𝑓𝑓(𝑡𝑡,𝑦𝑦1) − 𝑓𝑓(𝑡𝑡,𝑦𝑦2)|2 ≤ 𝑟𝑟|𝑦𝑦1 − 𝑦𝑦2|2 ,    𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚 �
1
2

, 𝑠𝑠�   , 𝑠𝑠 > 0 

(iv) For each 𝑥𝑥 ∈ 𝐶𝐶(𝐼𝐼,ℝ), the multivalued operator 𝑓𝑓: 𝐼𝐼 × ℝ → 𝐾𝐾𝑐𝑐𝑐𝑐(ℝ) is such that 
𝑓𝑓�𝑠𝑠, 𝑥𝑥(𝑠𝑠)� is lower semicontinuous in 𝐼𝐼 × 𝐼𝐼 

Now, we have the main result in the following theorem 

Theorem 2.2 
If the assumptions (i) – (iv) are satisfied, then there exists at least a weakly continuous 
solution of the integral equation (3.2) in the space 𝐶𝐶[0,1]. 
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Proof 
    First, we can deduce from the assumption (ii) that the integral operator  

 (𝑉𝑉𝑉𝑉)(𝑡𝑡) = � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑
1

0
 

Will be continuous and transforms the space 𝐶𝐶[0,1] into itself [14], also due to 
assumption (iii) we deduce that the superposition generated by the function  𝑓𝑓 transforms 
space 𝐶𝐶[0,1] into itself [14], so using our assumptions,  we see that the operator 𝑇𝑇 
transforms the space  𝑋𝑋 = 𝐶𝐶[0,1] into the space 𝐶𝐶𝐶𝐶(𝑋𝑋), i.e. 

𝑇𝑇:𝑋𝑋 = 𝐶𝐶[0,1] → 𝐶𝐶𝐶𝐶(𝑋𝑋) 

Next, since 

𝑑𝑑(𝑇𝑇𝑦𝑦1,𝑇𝑇𝑦𝑦2) = max
|𝑦𝑦1|,|𝑦𝑦2|<𝛿𝛿

�� 𝑣𝑣(𝑡𝑡, 𝑠𝑠) 𝑓𝑓�𝑠𝑠,𝑦𝑦1(𝑠𝑠)� − 𝑣𝑣(𝑡𝑡, 𝑠𝑠) 𝑓𝑓�𝑠𝑠,𝑦𝑦2(𝑠𝑠)�
1

0
𝑑𝑑𝑑𝑑 �

2

 

≤ max
|𝑦𝑦1|,|𝑦𝑦2|<𝛿𝛿

� �𝑣𝑣(𝑡𝑡, 𝑠𝑠) �𝑓𝑓�𝑠𝑠,𝑦𝑦1(𝑠𝑠)� −  𝑓𝑓�𝑠𝑠,𝑦𝑦2(𝑠𝑠)���
1

0

2

𝑑𝑑𝑑𝑑 

≤ 𝛼𝛼 max
|𝑦𝑦1|,|𝑦𝑦2|<𝛿𝛿

� � �𝑓𝑓�𝑠𝑠,𝑦𝑦1(𝑠𝑠)� −  𝑓𝑓�𝑠𝑠,𝑦𝑦2(𝑠𝑠)�� �2
1

0
𝑑𝑑𝑑𝑑 

≤ 𝛼𝛼 max
|𝑦𝑦1|,|𝑦𝑦2|<𝛿𝛿

� 𝑟𝑟|𝑦𝑦1(𝑠𝑠) − 𝑦𝑦2(𝑠𝑠)|2
1

0
𝑑𝑑𝑑𝑑 

≤ 𝛼𝛼 𝑟𝑟  max
|𝑦𝑦1|,|𝑦𝑦2|<𝛿𝛿

 |𝑦𝑦1(𝑡𝑡) − 𝑦𝑦2(𝑡𝑡)|2 

= 𝛼𝛼 𝑟𝑟  d(𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡)) 

≤ 𝛼𝛼 𝑟𝑟𝑀𝑀𝑇𝑇 �𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡)� + lim�𝑑𝑑�𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡)�,𝑑𝑑�𝑦𝑦2(𝑡𝑡),𝑇𝑇𝑦𝑦1(𝑡𝑡)� � 

Where 𝑀𝑀𝑇𝑇(𝑦𝑦1 ,𝑦𝑦2) = max �𝑑𝑑(𝑦𝑦1,𝑦𝑦2),𝑑𝑑(𝑦𝑦1,𝑇𝑇𝑇𝑇1),𝑑𝑑(𝑦𝑦2,𝑇𝑇𝑦𝑦2), 𝑑𝑑(𝑦𝑦1,𝑇𝑇𝑇𝑇2)+𝑑𝑑(𝑦𝑦2,𝑇𝑇𝑇𝑇1)
4

� 

Then T satisfies the conditions of theorem (2.1) and T has a fixed point      
 

Next, we will investigate a solution of our integro-differential equation (1) in the space 
𝐶𝐶(𝐼𝐼,ℝ) of all continuous real functions defined on an interval 𝐼𝐼 ⊂ ℝ, with norm 

‖𝑥𝑥‖ = sup
𝑡𝑡∈𝐼𝐼

‖𝑥𝑥(𝑡𝑡)‖ 

In this section, we will use the following fixed point theorem due to Nadler [6]. 
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Theorem 2.3 

Let (𝑋𝑋,𝑑𝑑, 𝑠𝑠) be a complete 𝑏𝑏-metric space and let 𝑇𝑇:𝑋𝑋 → 𝐶𝐶𝐶𝐶(𝑋𝑋). Assume that there 
exists 𝑘𝑘 ∈ (0,1) such that 𝑠𝑠𝑠𝑠(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝑘𝑘𝑘𝑘(𝑥𝑥,𝑦𝑦) for all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, then 𝑇𝑇 has a fixed 
point.  
 
Now, we will consider following assumptions under which our theorem will be proved. 
Assume that:  
(i)  ℎ ∈ 𝐶𝐶(𝐼𝐼,ℝ) 
(ii) For each 𝑥𝑥 ∈ 𝐶𝐶(𝐼𝐼,ℝ), the multivalued operator 𝑓𝑓: 𝐼𝐼 × ℝ → 𝐾𝐾𝑐𝑐𝑐𝑐(ℝ) is such that 

𝑓𝑓�𝑠𝑠, 𝑥𝑥(𝑠𝑠)� is lower semicontinuous in 𝐼𝐼 × 𝐼𝐼 
(iii) The function 𝑣𝑣 = 𝑣𝑣(𝑡𝑡, 𝑠𝑠): 𝐼𝐼 × 𝐼𝐼 →  ℝ  is continuous with respect to its two variables 

𝑡𝑡, 𝑠𝑠 and there exists a constant  𝑘𝑘 ∈ (0,1),  such that  

sup
𝑡𝑡∈𝐼𝐼

� 𝑣𝑣(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑 ≤ �𝑘𝑘
2

1

0

 

(iv) there exists 𝑙𝑙(𝑡𝑡) ∈ 𝐿𝐿1(𝐼𝐼), for each 𝑡𝑡 ∈ 𝐼𝐼  such that 
𝐻𝐻�𝑓𝑓(𝑠𝑠, 𝑥𝑥), 𝑓𝑓(𝑠𝑠,𝑦𝑦)� ≤ 𝑙𝑙(𝑠𝑠)|𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)| , for all 𝑠𝑠 ∈ 𝐼𝐼 and for all 𝑥𝑥,𝑦𝑦 ∈ ℝ 

     Hence, we have the following theorem 

Theorem 2.4 
If the conditions (i) – (iv) are satisfied, then equation (3.2) has at least one solution in 
𝐶𝐶(𝐼𝐼,ℝ) 

Proof 
Let us define the multivalued operator  

𝑇𝑇:𝐶𝐶(𝐼𝐼,ℝ)
         
�⎯� 𝐶𝐶𝐶𝐶(𝐼𝐼,ℝ) 

Where  𝐶𝐶𝐶𝐶(𝐼𝐼,ℝ) denotes the space of all non-empty and closed functions defined on an 
interval  𝐼𝐼 ⊂ ℝ , as 

𝑇𝑇𝑇𝑇(𝑡𝑡) = �𝑢𝑢 ∈ 𝐶𝐶(𝐼𝐼,ℝ) ∶  𝑢𝑢(𝑡𝑡) ∈ ℎ(𝑡𝑡) + � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠, 𝑥𝑥(𝑠𝑠)� 𝑑𝑑𝑑𝑑 , 𝑡𝑡 ∈ 𝐼𝐼� 

for each 𝑥𝑥 ∈ 𝐶𝐶(𝐼𝐼,ℝ).  
Let 𝑥𝑥 ∈ 𝐶𝐶(𝐼𝐼,ℝ) and 𝑓𝑓𝑥𝑥(𝑠𝑠) = 𝑓𝑓(𝑠𝑠, 𝑥𝑥(𝑠𝑠)) , 𝑠𝑠 ∈ 𝐼𝐼, for the multivalued operator 𝑓𝑓𝑥𝑥: 𝐼𝐼 →
𝐾𝐾𝑐𝑐𝑐𝑐(ℝ), by Michael’s selection theorem, we get that there exists a continuous 
operator 𝑔𝑔𝑥𝑥: 𝐼𝐼 → ℝ , such that 𝑔𝑔𝑥𝑥( 𝑠𝑠) ∈ 𝑓𝑓𝑥𝑥(𝑠𝑠) , for all 𝑡𝑡 ∈ 𝐼𝐼.  
This implies that ℎ(𝑡𝑡) + ∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)𝑓𝑓𝑥𝑥(𝑠𝑠)1

0 𝑑𝑑𝑑𝑑 ∈  𝑇𝑇𝑇𝑇 and so 𝑇𝑇𝑇𝑇 is a non-empty set. It is an 
easy matter to show that 𝑇𝑇 is closed. 
Let 𝑥𝑥𝑛𝑛          

�⎯�𝑥𝑥,  𝑇𝑇𝑇𝑇𝑛𝑛          
�⎯�𝑦𝑦 , we want to prove that 𝑇𝑇𝑇𝑇 = 𝑦𝑦 

Since 
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𝑇𝑇𝑥𝑥𝑛𝑛 = 𝑔𝑔(𝑡𝑡) + � 𝑘𝑘(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠, 𝑥𝑥𝑛𝑛(𝑠𝑠)�𝑑𝑑𝑑𝑑 

then as 𝑛𝑛 → ∞, we have 

𝑇𝑇𝑥𝑥𝑛𝑛 → 𝑔𝑔(𝑡𝑡) + � 𝑘𝑘(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓�𝑠𝑠, 𝑥𝑥(𝑠𝑠)�𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇 

Hence, 𝑦𝑦 = 𝑇𝑇𝑇𝑇 and so 𝑇𝑇 is closed. 
Next, we show that the multivalued operator 𝑇𝑇 satisfies all the hypotheses of theorem 
(2.3)  
Let 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶(𝐼𝐼,ℝ) be such that 𝑤𝑤1 ∈ 𝑇𝑇𝑇𝑇, then there exists 𝑔𝑔𝑥𝑥(𝑠𝑠) with 𝑠𝑠 ∈ 𝐼𝐼 such 
that 𝑤𝑤1(𝑡𝑡) ∈ ℎ(𝑡𝑡) + ∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1

0 𝑔𝑔𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑, 𝑡𝑡 ∈ 𝐼𝐼. 
On the other hand, by hypothesis (iii), we get 

𝐻𝐻 �𝑓𝑓�𝑠𝑠, 𝑥𝑥(𝑠𝑠)�,𝑓𝑓�𝑠𝑠,𝑦𝑦(𝑠𝑠)�� ≤ 𝑙𝑙(𝑠𝑠)|𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)|, for all ∈ 𝐼𝐼 , 𝑥𝑥,𝑦𝑦 ∈ ℝ 

Consequently, there exists 𝑤𝑤2 ∈ 𝑓𝑓𝑦𝑦(𝑠𝑠) such that  
|𝑔𝑔𝑥𝑥(𝑠𝑠) − 𝑤𝑤2(𝑠𝑠)| ≤ 𝑙𝑙(𝑠𝑠)|𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)| for all 𝑠𝑠 ∈ 𝐼𝐼 

Now, we can consider the multivalued operator 𝑆𝑆 defined by 
𝑆𝑆(𝑠𝑠) =  𝑓𝑓𝑦𝑦(𝑠𝑠) ∩ {𝑢𝑢 ∈ ℝ ∶  |𝑓𝑓𝑥𝑥(𝑠𝑠) − 𝑢𝑢| ≤ 𝑙𝑙(𝑠𝑠)|𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)|}, 𝑠𝑠 ∈ 𝐼𝐼  
Taking into the account the fact the multivalued operator 𝑓𝑓 is lower semicontinuous, 
it follows that there exists a continuous operator 𝑓𝑓𝑦𝑦: 𝐼𝐼 → ℝ such that 𝑓𝑓𝑦𝑦(𝑠𝑠) ∈
𝑆𝑆(𝑠𝑠), 𝑠𝑠 ∈ 𝐼𝐼. 
We have  

𝑧𝑧(𝑡𝑡) = ℎ(𝑡𝑡) + � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)
1

0
𝑓𝑓𝑦𝑦(𝑠𝑠)𝑑𝑑𝑑𝑑 ∈ ℎ(𝑡𝑡) + � 𝑣𝑣(𝑡𝑡, 𝑠𝑠)

1

0
𝑓𝑓(𝑠𝑠,𝑦𝑦(𝑠𝑠))𝑑𝑑𝑑𝑑 

and |𝑤𝑤1(𝑡𝑡) − 𝑧𝑧(𝑡𝑡)|2  ≤ �∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1
0 �𝑓𝑓𝑥𝑥(𝑠𝑠) − 𝑓𝑓𝑦𝑦(𝑠𝑠)�𝑑𝑑𝑑𝑑�

2
 

≤ �∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1
0 |𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)|𝑑𝑑𝑑𝑑�

2
  

≤ �∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1
0

��𝑥𝑥(𝑠𝑠) − 𝑦𝑦(𝑠𝑠)�2𝑑𝑑𝑑𝑑�
2

  

≤ �∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1
0 �‖(𝑥𝑥 − 𝑦𝑦)2‖∞𝑑𝑑𝑑𝑑�

2
  

≤ ‖(𝑥𝑥 − 𝑦𝑦)2‖∞ �∫ 𝑣𝑣(𝑡𝑡, 𝑠𝑠)1
0 𝑑𝑑𝑑𝑑�

2
  

≤ ‖(𝑥𝑥 − 𝑦𝑦)2‖∞ ��
𝑘𝑘
2
�
2

  

So, we have 

𝑑𝑑(𝑣𝑣, 𝑧𝑧) ≤
𝑘𝑘
2
𝑑𝑑(𝑥𝑥,𝑦𝑦) 

Then 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 7, July-2019                                                                                   1092 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

2𝐻𝐻(𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ≤ 𝑘𝑘𝑘𝑘(𝑥𝑥,𝑦𝑦) ,      for all 𝑥𝑥,𝑦𝑦 ∈ 𝐶𝐶(𝐼𝐼,ℝ) 
Thus, all the conditions of theorem (2.3) are satisfied, and then equation (2) has a fixed 
point.  
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